Bioenergetic and Cytokine Profiling May Help to Rescue More DCD Livers for Transplantation

Author:

Hofmann Julia1ORCID,Meszaros Andras T.1ORCID,Buch Madita L.1,Nardin Florian1,Hackl Verena1,Strolz Carola J.1,Zelger Bettina2,Fodor Margot1ORCID,Cardini Benno1,Oberhuber Rupert1,Resch Thomas1,Weissenbacher Annemarie1,Troppmair Jakob1ORCID,Schneeberger Stefan1ORCID,Hautz Theresa1ORCID

Affiliation:

1. organLife Organ Regeneration Center of Excellence and Daniel Swarovski Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria

2. Department of Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria

Abstract

The majority of organs used for liver transplantation come from brain-dead donors (DBD). In order to overcome the organ shortage, increasingly donation after circulatory death (DCD) organs are also considered. Since normothermic machine perfusion (NMP) restores metabolic activity and allows for in-depth assessment of organ quality and function prior to transplantation, such organs may benefit from NMP. We herein compare the bioenergetic performance through a comprehensive evaluation of mitochondria by high-resolution respirometry in tissue biopsies and the inflammatory response in DBD and DCD livers during NMP. While livers were indistinguishable by perfusate biomarker assessment and histology, our findings revealed a greater impairment of mitochondrial function in DCD livers after static cold storage compared to DBD livers. During subsequent NMPs, DCD organs recovered and eventually showed a similar performance as DBD livers. Cytokine expression analysis showed no differences in the early phase of NMP, while towards the end of NMP, significantly elevated levels of IL-1β, IL-5 and IL-6 were found in the perfusate of DCD livers. Based on our results, we find it worthwhile to reconsider more DCD organs for transplantation to further extend the donor pool. Therefore, donor organ quality criteria must be developed, which may include an assessment of bioenergetic function and cytokine quantification.

Funder

In Memoriam Dr. Gabriel Salzner Stiftung

Tiroler Wissenschaftsfond

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3