Capacitive Electrode-Based Electric Field Treatments on Redox-Toxic Iron Deposits in Transgenic AD Mouse Models: The Electroceutical Targeting of Alzheimer’s Disease Feasibility Study

Author:

Choi Younshick1ORCID,Lee Won-Seok2,Lee Jaemeun3ORCID,Park Sun-Hyun3,Kim Sunwoung1,Kim Ki-Hong4,Park Sua5,Kim Eun Ho2,Kim Jong-Ki1

Affiliation:

1. Departments of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea

2. Departments of Biochemistry, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea

3. Korea R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea

4. Department of Optometry and Vision Science, Daegu Catholic University, Kyungsan 38430, Republic of Korea

5. Department of Neurology, Inje University Ilsan Paik Hospital, Koyang 10380, Republic of Korea

Abstract

Iron accumulation in the brain accelerates Alzheimer’s disease progression. To cure iron toxicity, we assessed the therapeutic effects of noncontact transcranial electric field stimulation to the brain on toxic iron deposits in either the Aβ fibril structure or the Aβ plaque in a mouse model of Alzheimer’s disease (AD) as a pilot study. A capacitive electrode-based alternating electric field (AEF) was applied to a suspension of magnetite (Fe3O4) to measure field-sensitized reactive oxygen species (ROS) generation. The increase in ROS generation compared to the untreated control was both exposure-time and AEF-frequency dependent. The frequency-specific exposure of AEF to 0.7–1.4 V/cm on a magnetite-bound Aβ-fibril or a transgenic Alzheimer’s disease (AD) mouse model revealed the degradation of the Aβ fibril or the removal of the Aβ-plaque burden and ferrous magnetite compared to the untreated control. The results of the behavioral tests show an improvement in impaired cognitive function following AEF treatment on the AD mouse model. Tissue clearing and 3D-imaging analysis revealed no induced damage to the neuronal structures of normal brain tissue following AEF treatment. In conclusion, our results suggest that the effective degradation of magnetite-bound amyloid fibrils or plaques in the AD brain by the electro-Fenton effect from electric field-sensitized magnetite offers a potential electroceutical treatment option for AD.

Funder

Daegu Catholic University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3