Neurological Phenotypes in Mouse Models of Mitochondrial Disease and Relevance to Human Neuropathology

Author:

Olkhova Elizaveta A.12,Smith Laura A.12ORCID,Bradshaw Carla12,Gorman Gráinne S.1234,Erskine Daniel124,Ng Yi Shiau1234ORCID

Affiliation:

1. Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

2. Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

3. NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK

4. NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK

Abstract

Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.

Funder

Wellcome Centre for Mitochondrial Research

Ryan Stanford Appeal and Great Ormond Street Hospital Charity

Alzheimer’s Research UK Senior Fellowship

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3