Bisphenol S Reduces Pig Spermatozoa Motility through Different Intracellular Pathways and Mechanisms than Its Analog Bisphenol A

Author:

Torres-Badia Mercedes1,Martin-Hidalgo David12ORCID,Serrano Rebeca1ORCID,Garcia-Marin Luis J.1,Bragado Maria J.1ORCID

Affiliation:

1. Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain

2. Research Unit, Complejo Hospitalario Universitario de Cáceres, 10003 Cáceres, Spain

Abstract

Bisphenol A (BPA: 2,3-bis (4-hydroxyphenyl) propane) is an environmental chemical widely used in the manufacturing of epoxy polymers and many thermoplastic consumer products. Serious concerns about its safety led to the development of analogs, such as BPS (4-hydroxyphenyl sulfone). Very limited studies about BPS’s impact on reproduction, specifically in spermatozoa, exist in comparison with BPA. Therefore, this work aims to study the in vitro impact of BPS in pig spermatozoa in comparison with BPA, focusing on sperm motility, intracellular signaling pathways and functional sperm parameters. We have used porcine spermatozoa as an optimal and validated in vitro cell model to investigate sperm toxicity. Pig spermatozoa were exposed to 1 and 100 μM BPS or BPA for 3 and 20 h. Both bisphenol S and A (100 μM) significantly reduce pig sperm motility in a time-dependent manner, although BPS exerts a lower and slower effect than BPA. Moreover, BPS (100 μM, 20 h) causes a significant increase in the mitochondrial reactive species, whereas it does not affect sperm viability, mitochondrial membrane potential, cell reactive oxygen species, GSK3α/β phosphorylation or phosphorylation of PKA substrates. However, BPA (100 μM, 20 h) leads to a decrease in sperm viability, mitochondrial membrane potential, GSK3β phosphorylation and PKA phosphorylation, also causing an increase in cell reactive oxygen species and mitochondrial reactive species. These intracellular effects and signaling pathways inhibited might contribute to explaining the BPA-triggered reduction in pig sperm motility. However, the intracellular pathways and mechanisms triggered by BPS are different, and the BPS-caused reduction in motility can be only partially attributed to an increase in mitochondrial oxidant species.

Funder

Junta de Extremadura

Roche Farma S.A

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3