TROAP Promotes the Proliferation, Migration, and Metastasis of Kidney Renal Clear Cell Carcinoma with the Help of STAT3

Author:

Wang Jun12,Wan Hongyuan13,Mi Yuanyuan1,Wu Sheng1,Li Jie2,Zhu Lijie1

Affiliation:

1. Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China

2. Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, China

3. Wuxi Medical College, Jiangnan University, Wuxi 214122, China

Abstract

Kidney renal clear cell carcinoma (KIRC) is a subtype of renal cell carcinoma that threatens human health. The mechanism by which the trophinin-associated protein (TROAP)–an important oncogenic factor–functions in KIRC has not been studied. This study investigated the specific mechanism by which TROAP functions in KIRC. TROAP expression in KIRC was analyzed using the RNAseq dataset from the Cancer Genome Atlas (TCGA) online database. The Mann–Whitney U test was used to analyze the expression of this gene from clinical data. The Kaplan–Meier method was used for the survival analysis of KIRC. The expression level of TROAP mRNA in the cells was detected using qRT-PCR. The proliferation, migration, apoptosis, and cell cycle of KIRC were detected using Celigo, MTT, wound healing, cell invasion assay, and flow cytometry. A mouse subcutaneous xenograft experiment was designed to demonstrate the effect of TROAP expression on KIRC growth in vivo. To further investigate the regulatory mechanism of TROAP, we performed co-immunoprecipitation (CO-IP) and shotgun liquid chromatography–tandem mass spectrometry (LC-MS). TCGA-related bioinformatics analysis showed that TROAP was significantly overexpressed in KIRC tissues and was related to higher T and pathological stages, and a poor prognosis. The inhibition of TROAP expression significantly reduced the proliferation of KIRC, affected the cell cycle, promoted cell apoptosis, and reduced cell migration and invasion. The subcutaneous xenograft experiments showed that the size and weight of the tumors in mice were significantly reduced after TROAP-knockdown. CO-IP and post-mass spectrometry bioinformatics analyses revealed that TROAP may combine with signal transducer and activator of transcription 3 (STAT3) to achieve tumor progression in KIRC; this was verified by functional recovery experiments. TROAP may regulate KIRC proliferation, migration, and metastasis by binding to STAT3.

Funder

National Natural Science Foundation

Wuxi City Medical Young Talent

Wuxi Commission of Health and Family Planning

Science and Technology Development Fund of Wuxi

Jiangnan University Wuxi School of Medicine

Talent plan of Taihu Lake in Wuxi (Double Hundred Medical Youth Professionals Program) from Health Committee of Wuxi

Clinical trial of Affiliated Hospital of Jiangnan University

Research topic of Jiangsu Health Commission

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3