Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation?

Author:

Kniazkina Marina1,Dyachuk Vyacheslav1

Affiliation:

1. A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia

Abstract

Sleep–wake cycle disorders are an important symptom of many neurological diseases, including Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis. Circadian rhythms and sleep–wake cycles play a key role in maintaining the health of organisms. To date, these processes are still poorly understood and, therefore, need more detailed elucidation. The sleep process has been extensively studied in vertebrates, such as mammals and, to a lesser extent, in invertebrates. A complex, multi-step interaction of homeostatic processes and neurotransmitters provides the sleep–wake cycle. Many other regulatory molecules are also involved in the cycle regulation, but their functions remain largely unclear. One of these signaling systems is epidermal growth factor receptor (EGFR), which regulates the activity of neurons in the modulation of the sleep–wake cycle in vertebrates. We have evaluated the possible role of the EGFR signaling pathway in the molecular regulation of sleep. Understanding the molecular mechanisms that underlie sleep–wake regulation will provide critical insight into the fundamental regulatory functions of the brain. New findings of sleep-regulatory pathways may provide new drug targets and approaches for the treatment of sleep-related diseases.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference147 articles.

1. sleep in Drosophila is regulated by adult mushroom bodies;Joiner;Nat. Neurosci.,2006

2. Attacking sleep from a new angle: Contributions from zebrafish;Oikonomou;Curr. Opin. Neurobiol.,2017

3. Neurotransmitters of sleep and wakefulness in flatworms;Omond;Sleep,2022

4. Sleep and cytokines;Krueger;Sleep Med. Clin.,2007

5. The locus ceruleus responds to signaling molecules obtained from the CSF by transfer through tanycytes;Feng;J. Neurosci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3