Sustainable Cellulose Nanofibers-Mediated Synthesis of Uniform Spinel Zn-Ferrites Nanocorals for High Performances in Supercapacitors

Author:

Teixeira Lucas T.1,de Lima Scarllet L. S.1,Rosado Taissa F.1,Liu Liying2,Vitorino Hector A.3ORCID,dos Santos Clenilton C.4ORCID,Mendonça Jhonatam P.5,Garcia Marco A. S.5ORCID,Siqueira Rogério N. C.1ORCID,da Silva Anderson G. M.1ORCID

Affiliation:

1. Departamento de Engenharia Química e de Materiais—DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil

2. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil

3. Centro de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Lima 15046, Peru

4. Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil

5. Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil

Abstract

Spinel ferrites are versatile, low-cost, and abundant metal oxides with remarkable electronic and magnetic properties, which find several applications. Among them, they have been considered part of the next generation of electrochemical energy storage materials due to their variable oxidation states, low environmental toxicity, and possible synthesis through simple green chemical processing. However, most traditional procedures lead to the formation of poorly controlled materials (in terms of size, shape, composition, and/or crystalline structure). Thus, we report herein a cellulose nanofibers-mediated green procedure to prepare controlled highly porous nanocorals comprised of spinel Zn-ferrites. Then, they presented remarkable applications as electrodes in supercapacitors, which were thoroughly and critically discussed. The spinel Zn-ferrites nanocorals supercapacitor showed a much higher maximum specific capacitance (2031.81 F g−1 at a current density of 1 A g−1) than Fe2O3 and ZnO counterparts prepared by a similar approach (189.74 and 24.39 F g−1 at a current density of 1 A g−1). Its cyclic stability was also scrutinized via galvanostatic charging/discharging and electrochemical impedance spectroscopy, indicating excellent long-term stability. In addition, we manufactured an asymmetric supercapacitor device, which offered a high energy density value of 18.1 Wh kg−1 at a power density of 2609.2 W kg−1 (at 1 A g−1 in 2.0 mol L−1 KOH electrolyte). Based on our findings, we believe that higher performances observed for spinel Zn-ferrites nanocorals could be explained by their unique crystal structure and electronic configuration based on crystal field stabilization energy, which provides an electrostatic repulsion between the d electrons and the p orbitals of the surrounding oxygen anions, creating a level of energy that determines their final supercapacitance then evidenced, which is a very interesting property that could be explored for the production of clean energy storage devices.

Funder

Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil

CNPq

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3