Intratumoral Restoration of miR-137 Plus Cholesterol Favors Homeostasis of the miR-137/Coactivator p160/AR Axis and Negatively Modulates Tumor Progression in Advanced Prostate Cancer

Author:

Pimenta Ruan12ORCID,Mioshi Carolina Mie13,Gonçalves Guilherme L.4,Candido Patrícia1,Camargo Juliana A.1ORCID,Guimarães Vanessa R.1,Chiovatto Caroline15,Ghazarian Vitória1ORCID,Romão Poliana1,da Silva Karina Serafim15ORCID,dos Santos Gabriel A.1,Silva Iran A.1,Srougi Miguel12,Nahas William C.6,Leite Kátia R.1ORCID,Viana Nayara I.17ORCID,Reis Sabrina T.1

Affiliation:

1. Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil

2. D’Or Institute for Research and Education (ID’Or), São Paulo 04501000, SP, Brazil

3. Campus Santo André, Universidade Federal do ABC, Santo André 09210580, SP, Brazil

4. Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil

5. Campus Ipiranga, Centro Universitário São Camilo, São Paulo 04263200, SP, Brazil

6. Uro-Oncology Group, Urology Department, Institute of Cancer Estate of São Paulo (ICESP), São Paulo 01246000, SP, Brazil

7. Campus Passos, Universidade do Estado de Minas Gerais—UEMG, Passos 37900106, MG, Brazil

Abstract

MicroRNAs (miRNAs) have gained a prominent role as biomarkers in prostate cancer (PCa). Our study aimed to evaluate the potential suppressive effect of miR-137 in a model of advanced PCa with and without diet-induced hypercholesterolemia. In vitro, PC-3 cells were treated with 50 pmol of mimic miR-137 for 24 h, and gene and protein expression levels of SRC-1, SRC-2, SRC-3, and AR were evaluated by qPCR and immunofluorescence. We also assessed migration rate, invasion, colony-forming ability, and flow cytometry assays (apoptosis and cell cycle) after 24 h of miRNA treatment. For in vivo experiments, 16 male NOD/SCID mice were used to evaluate the effect of restoring miR-137 expression together with cholesterol. The animals were fed a standard (SD) or hypercholesterolemic (HCOL) diet for 21 days. After this, we xenografted PC-3 LUC-MC6 cells into their subcutaneous tissue. Tumor volume and bioluminescence intensity were measured weekly. After the tumors reached 50 mm3, we started intratumor treatments with a miR-137 mimic, at a dose of 6 μg weekly for four weeks. Ultimately, the animals were killed, and the xenografts were resected and analyzed for gene and protein expression. The animals’ serum was collected to evaluate the lipid profile. The in vitro results showed that miR-137 could inhibit the transcription and translation of the p160 family, SRC-1, SRC-2, and SRC-3, and indirectly reduce the expression of AR. After these analyses, it was determined that increased miR-137 inhibits cell migration and invasion and impacts reduced proliferation and increased apoptosis rates. The in vivo results demonstrated that tumor growth was arrested after the intratumoral restoration of miR-137, and proliferation levels were reduced in the SD and HCOL groups. Interestingly, the tumor growth retention response was more significant in the HCOL group. We conclude that miR-137 is a potential therapeutic miRNA that, in association with androgen precursors, can restore and reinstate the AR-mediated axis of transcription and transactivation of androgenic pathway homeostasis. Further studies involving the miR-137/coregulator/AR/cholesterol axis should be conducted to evaluate this miR in a clinical context.

Funder

São Paulo Research Foundation (FAPESP) to Ruan Pimenta

Vitória Ghazarian

Juliana Alves de Camargo

Guilherme Lopes Gonçalves

Caroline Chiovatto

Karina Serafim

Sabrina T. Reis

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3