Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans

Author:

Nicoletto Giulia1ORCID,Richter Sara N.1ORCID,Frasson Ilaria1ORCID

Affiliation:

1. Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy

Abstract

Guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4s are found in the human genome and in the genomes of human pathogens, where they are involved in the regulation of gene expression and genome replication. G4s have been proposed as novel pharmacological targets in humans and their exploitation for antiviral therapy is an emerging research topic. Here, we report on the presence, conservation and localization of putative G4-forming sequences (PQSs) in human arboviruses. The prediction of PQSs was performed on more than twelve thousand viral genomes, belonging to forty different arboviruses that infect humans, and revealed that the abundance of PQSs in arboviruses is not related to the genomic GC content, but depends on the type of nucleic acid that constitutes the viral genome. Positive-strand ssRNA arboviruses, especially Flaviviruses, are significantly enriched in highly conserved PQSs, located in coding sequences (CDSs) or untranslated regions (UTRs). In contrast, negative-strand ssRNA and dsRNA arboviruses contain few conserved PQSs. Our analyses also revealed the presence of bulged PQSs, accounting for 17–26% of the total predicted PQSs. The data presented highlight the presence of highly conserved PQS in human arboviruses and present non-canonical nucleic acid-structures as promising therapeutic targets in arbovirus infections.

Funder

Next Generation EU-MUR PNRR

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference53 articles.

1. (2023, February 01). Vector-Borne Diseases. Available online: https://www.ecdc.europa.eu/en/climate-change/climate-change-europe/vector-borne-diseases.

2. (2023, February 01). Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.

3. Emerging and Re-Emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review;Chala;Front. Public Health,2021

4. Preparing Clinicians for (Re-)Emerging Arbovirus Infectious Diseases in Europe;Sigfrid;Clin. Microbiol. Infect.,2018

5. Climate Change: An Enduring Challenge for Vector-Borne Disease Prevention and Control;Dubrow;Nat. Immunol.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3