Contribution to Understanding the Mechanisms Involved in Biofilm Formation, Tolerance and Control

Author:

Simões Lúcia Chaves12ORCID,Simões Manuel34ORCID

Affiliation:

1. CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

2. LABBELS—Associate Laboratory, 4710-057 Braga, Portugal

3. LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

4. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

Biofilms constitute a protected mode of growth that allows the colonizing microbial cells to survive in hostile environments, even when an antimicrobial agent is present. The scientific community has come to understand many things about the growth dynamics and behavior of microbial biofilms. It is now accepted that biofilm formation is a multifactorial process that starts with the adhesion of individual cells and (auto-)coaggregates of cells to a surface. Then, attached cells grow, reproduce and secrete insoluble extracellular polymeric substances. As the biofilm matures, biofilm detachment and growth processes come into balance, such that the total amount of biomass on the surface remains approximately constant in time. The detached cells retain the phenotype of the biofilm cells, which facilitates the colonization of neighboring surfaces. The most common practice to eliminate unwanted biofilms is the application of antimicrobial agents. However, conventional antimicrobial agents often show inefficacy in the control of biofilms. Much remains to be understood in the biofilm formation process and in the development of effective strategies for biofilm prevention and control. The articles contained in this Special Issue deal with biofilms of some important bacteria (including pathogens such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and fungi (Candida tropicalis), providing novel insights into their formation mechanisms and implications, together with novel methods (e.g., use of chemical conjugates and combinations of molecules) that can be used to disrupt the biofilm structure and kill the colonizing cells.

Funder

ALiCE

LEPABE

PIDDAC

CEB

LABBELS—Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems

FEDER

FCT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3