Genome-Wide Analysis of WRKY Transcription Factors Involved in Abiotic Stress and ABA Response in Caragana korshinskii

Author:

Liu Jinhua1,Li Guojing1,Wang Ruigang1,Wang Guangxia1,Wan Yongqing1

Affiliation:

1. Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

The WRKY transcription factor family plays a vital role in plant development and environmental response. However, the information of WRKY genes at the genome-wide level is rarely reported in Caragana korshinskii. In this study, we identified and renamed 86 CkWRKY genes, which were further classified into three groups through phylogenetic analysis. Most of these WRKY genes were clustered and distributed on eight chromosomes. Multiple sequence alignment revealed that the conserved domain (WRKYGQK) of the CkWRKYs was basically consistent, but there were also six variation types (WRKYGKK, GRKYGQK, WRMYGQK, WRKYGHK, WKKYEEK and RRKYGQK) that appeared. The motif composition of the CkWRKYs was quite conservative in each group. In general, the number of WRKY genes gradually increased from lower to higher plant species in the evolutionary analysis of 28 species, with some exceptions. Transcriptomics data and RT-qPCR analysis showed that the CkWRKYs in different groups were involved in abiotic stresses and ABA response. Our results provided a basis for the functional characterization of the CkWRKYs involved in stress resistance in C. korshinskii.

Funder

Inner Mongolia Natural Science Foundation

National Natural Science Foundation of China

Special Project in Major Science and Technology Program of Hohhot

Development Fund from the Central Government Guiding Local Science and Technology Program

Research Team of Inner Mongolia Agricultural University

The University Scientific and Technological Innovation Team Project of Inner Mongolia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3