Chelator PBT2 Forms a Ternary Cu2+ Complex with β-Amyloid That Has High Stability but Low Specificity

Author:

Drew Simon C.12ORCID

Affiliation:

1. Brain–Immune Communication Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France

2. Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Victoria 3010, Australia

Abstract

The metal chelator PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) acts as a terdentate ligand capable of forming binary and ternary Cu2+ complexes. It was clinically trialed as an Alzheimer’s disease (AD) therapy but failed to progress beyond phase II. The β-amyloid (Aβ) peptide associated with AD was recently concluded to form a unique Cu(Aβ) complex that is inaccessible to PBT2. Herein, it is shown that the species ascribed to this binary Cu(Aβ) complex in fact corresponds to ternary Cu(PBT2)NImAβ complexes formed by the anchoring of Cu(PBT2) on imine nitrogen (NIm) donors of His side chains. The primary site of ternary complex formation is His6, with a conditional stepwise formation constant at pH 7.4 (Kc [M−1]) of logKc = 6.4 ± 0.1, and a second site is supplied by His13 or His14 (logKc = 4.4 ± 0.1). The stability of Cu(PBT2)NImH13/14 is comparable with that of the simplest Cu(PBT2)NIm complexes involving the NIm coordination of free imidazole (logKc = 4.22 ± 0.09) and histamine (logKc = 4.00 ± 0.05). The 100-fold larger formation constant for Cu(PBT2)NImH6 indicates that outer-sphere ligand–peptide interactions strongly stabilize its structure. Despite the relatively high stability of Cu(PBT2)NImH6, PBT2 is a promiscuous chelator capable of forming a ternary Cu(PBT2)NIm complex with any ligand containing an NIm donor. These ligands include histamine, L-His, and ubiquitous His side chains of peptides and proteins in the extracellular milieu, whose combined effect should outweigh that of a single Cu(PBT2)NImH6 complex regardless of its stability. We therefore conclude that PBT2 is capable of accessing Cu(Aβ) complexes with high stability but low specificity. The results have implications for future AD therapeutic strategies and understanding the role of PBT2 in the bulk transport of transition metal ions. Given the repurposing of PBT2 as a drug for breaking antibiotic resistance, ternary Cu(PBT2)NIm and analogous Zn(PBT2)NIm complexes may be relevant to its antimicrobial properties.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference33 articles.

1. Metals and neuroscience;Bush;Curr. Opin. Chem. Biol.,2000

2. Drug development based on the metals hypothesis of Alzheimer’s disease;Bush;J. Alzheimers Dis.,2008

3. Adlard, P.A., Bica, L., White, A.R., Nurjono, M., Filiz, G., Crouch, P.J., Donnelly, P.S., Cappai, R., Finkelstein, D.I., and Bush, A.I. (2011). Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS ONE, 6.

4. Metal protein attenuating compounds for the treatment of Alzheimer’s dementia;Sampson;Cochrane Database Syst. Rev.,2014

5. (2014, April 01). Available online: www.alzforum.org/news/research-news/pbt2-takes-dive-phase-2-alzheimers-trial.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3