Inhibitory Effect of Zinc on Colorectal Cancer by Granzyme B Transcriptional Regulation in Cytotoxic T Cells

Author:

Nakagawa Naoya1,Fujisawa Yutaka2ORCID,Xiang Huihui3ORCID,Kitamura Hidemitsu34,Nishida Keigo12

Affiliation:

1. Laboratory of Immune Regulation, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan

2. Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan

3. Division of Functional Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan

4. Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585, Japan

Abstract

Zinc is one of the essential trace elements and is involved in various functions in the body. Zinc deficiency is known to cause immune abnormalities, but the mechanism is not fully understood. Therefore, we focused our research on tumor immunity to elucidate the effect of zinc on colorectal cancer and its mechanisms. Mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) to develop colorectal cancer, and the relationship between zinc content in the diet and the number and area of tumors in the colon was observed. The number of tumors in the colon was significantly higher in the no-zinc-added group than in the normal zinc intake group, and about half as many in the high-zinc-intake group as in the normal-zinc-intake group. In T-cell-deficient mice, the number of tumors in the high-zinc-intake group was similar to that in the normal-zinc-intake group, suggesting that the inhibitory effect of zinc was dependent on T cells. Furthermore, we found that the amount of granzyme B transcript released by cytotoxic T cells upon antigen stimulation was significantly increased by the addition of zinc. We also showed that granzyme B transcriptional activation by zinc addition was dependent on calcineurin activity. In this study, we have shown that zinc exerts its tumor-suppressive effect by acting on cytotoxic T cells, the center of cellular immunity, and increases the transcription of granzyme B, one of the key molecules in tumor immunity.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3