Unleashing the Influence of cAMP Receptor Protein: The Master Switch of Bacteriocin Export in Pectobacterium carotovorum subsp. carotovorum

Author:

Chang Chung-Pei1,Lagitnay Ruchi Briam James Sersenia23ORCID,Li Tzu-Rong3,Lai Wei-Ting3,Derilo Reymund Calanga34ORCID,Chuang Duen-Yau3ORCID

Affiliation:

1. Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua 500, Taiwan

2. College of Arts and Sciences, Bayombong Campus, Nueva Vizcaya State University, Bayombong 3700, Philippines

3. Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan

4. College of Teacher Education, Bambang Campus, Nueva Vizcaya State University, Bambang 3702, Philippines

Abstract

Pectobacterium carotovorum subsp. carotovorum (Pcc) is a Gram-negative phytopathogenic bacterium that produces carocin, a low-molecular-weight bacteriocin that can kill related strains in response to factors in the environment such as UV exposure or nutritional deficiency. The function of the catabolite activator protein (CAP), also known as the cyclic AMP receptor protein (CRP), as a regulator of carocin synthesis was examined. The crp gene was knocked out as part of the investigation, and the outcomes were assessed both in vivo and in vitro. Analysis of the DNA sequence upstream of the translation initiation site of carocin S3 revealed two putative binding sites for CRP that were confirmed using a biotinylated probe pull-down experiment. This study revealed that the deletion of crp inhibited genes involved in extracellular bacteriocin export via the flagellar type III secretion system and impacted the production of many low-molecular-weight bacteriocins. The biotinylated probe pull-down test demonstrated that when UV induction was missing, CRP preferentially attached to one of the two CAP sites while binding to both when UV induction was present. In conclusion, our research aimed to simulate the signal transduction system that controls the expression of the carocin gene in response to UV induction.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3