Efficient Photocatalytic Degradation of Tetracycline on the MnFe2O4/BGA Composite under Visible Light

Author:

Jiang Xiaoyu1,Zhou Qin1ORCID,Lian Yongfu1ORCID

Affiliation:

1. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China

Abstract

In this work, the MnFe2O4/BGA (boron-doped graphene aerogel) composite prepared via the solvothermal method is applied as a photocatalyst to the degradation of tetracycline in the presence of peroxymonosulfate. The composite’s phase composition, morphology, valence state of elements, defect and pore structure were analyzed by XRD, SEM/TEM, XPS, Raman scattering and N2 adsorption–desorption isotherms, respectively. Under the radiation of visible light, the experimental parameters, including the ratio of BGA to MnFe2O4, the dosages of MnFe2O4/BGA and PMS, and the initial pH and tetracycline concentration were optimized in line with the degradation of tetracycline. Under the optimized conditions, the degradation rate of tetracycline reached 92.15% within 60 min, whereas the degradation rate constant on MnFe2O4/BGA remained 4.1 × 10−2 min−1, which was 1.93 and 1.56 times of those on BGA and MnFe2O4, respectively. The largely enhanced photocatalytic activity of the MnFe2O4/BGA composite over MnFe2O4 and BGA could be ascribed to the formation of type I heterojunction on the interfaces of BGA and MnFe2O4, which leads to the efficient transfer and separation of photogenerated charge carriers. Transient photocurrent response and electrochemical impedance spectroscopy tests offered solid support to this assumption. In line with the active species trapping experiments, SO4•− and O2•− radicals are confirmed to play crucial roles in the rapid and efficient degradation of tetracycline, and accordingly, a photodegradation mechanism for the degradation of tetracycline on MnFe2O4/BGA is proposed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3