Liver Fibrosis Resolution: From Molecular Mechanisms to Therapeutic Opportunities

Author:

Pei Qiying1,Yi Qian2,Tang Liling1ORCID

Affiliation:

1. Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China

2. Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China

Abstract

The liver is a critical system for metabolism in human beings, which plays an essential role in an abundance of physiological processes and is vulnerable to endogenous or exogenous injuries. After the damage to the liver, a type of aberrant wound healing response known as liver fibrosis may happen, which can result in an excessive accumulation of extracellular matrix (ECM) and then cause cirrhosis or hepatocellular carcinoma (HCC), seriously endangering human health and causing a great economic burden. However, few effective anti-fibrotic medications are clinically available to treat liver fibrosis. The most efficient approach to liver fibrosis prevention and treatment currently is to eliminate its causes, but this approach’s efficiency is too slow, or some causes cannot be fully eliminated, which causes liver fibrosis to worsen. In cases of advanced fibrosis, the only available treatment is liver transplantation. Therefore, new treatments or therapeutic agents need to be explored to stop the further development of early liver fibrosis or to reverse the fibrosis process to achieve liver fibrosis resolution. Understanding the mechanisms that lead to the development of liver fibrosis is necessary to find new therapeutic targets and drugs. The complex process of liver fibrosis is regulated by a variety of cells and cytokines, among which hepatic stellate cells (HSCs) are the essential cells, and their continued activation will lead to further progression of liver fibrosis. It has been found that inhibiting HSC activation, or inducing apoptosis, and inactivating activated hepatic stellate cells (aHSCs) can reverse fibrosis and thus achieve liver fibrosis regression. Hence, this review will concentrate on how HSCs become activated during liver fibrosis, including intercellular interactions and related signaling pathways, as well as targeting HSCs or liver fibrosis signaling pathways to achieve the resolution of liver fibrosis. Finally, new therapeutic compounds targeting liver fibrosis are summarized to provide more options for the therapy of liver fibrosis.

Funder

National Natural Science Foundation of China

Luzhou Science and Technology Program

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3