Design and Implementation of a Cloud-IoT-Based Home Energy Management System

Author:

Condon FelipeORCID,Martínez José M.ORCID,Eltamaly Ali M.ORCID,Kim Young-ChonORCID,Ahmed Mohamed A.ORCID

Abstract

The advances in the Internet of Things (IoT) and cloud computing opened new opportunities for developing various smart grid applications and services. The rapidly increasing adoption of IoT devices has enabled the development of applications and solutions to manage energy consumption efficiently. This work presents the design and implementation of a home energy management system (HEMS), which allows collecting and storing energy consumption data from appliances and the main load of the home. Two scenarios are designed and implemented: a local HEMS isolated from the Internet and relies on its processing and storage duties using an edge device and a Cloud HEMS using AWS IoT Core to manage incoming data messages and provide data-driven services and applications. A testbed was carried out in a real house in the city of Valparaiso, Chile, over a one-year period, where four appliances were used to collect energy consumption using smart plugs, as well as collecting the main energy load of the house through a data logger acting as a smart meter. To the best of our knowledge, this is the first electrical energy dataset with a 10-second sampling rate from a real household in Valparaiso, Chile. Results show that both implementations perform the baseline tasks (collecting, storing, and controlling) for a HEMS. This work contributes by providing a detailed technical implementation of HEMS that enables researchers and engineers to develop and implement HEMS solutions to support different smart home applications.

Funder

Agencia Nacional de Investigación y Desarrollo

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a low-cost IoT-based data logger for monitoring the palm sugar drying system using ESP32 and Modbus/MQTT conversion;IOP Conference Series: Earth and Environmental Science;2024-08-01

2. Edge-Cloud Architectures for Hybrid Energy Management Systems: A Comprehensive Review;IEEE Sensors Journal;2024-05-15

3. Application and Optimization of IoT in Storage Devices for Hydrogen Energy;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

4. A Survey of Home Energy Management Systems and their Efficacy in South Africa;2024 Conference on Information Communications Technology and Society (ICTAS);2024-03-07

5. A Home LPM System Based on WSN;Algorithms for Intelligent Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3