A Deep Learning Based Data Recovery Approach for Missing and Erroneous Data of IoT Nodes

Author:

Vedavalli PerigisettyORCID,Ch DeepakORCID

Abstract

Internet of things (IoT) nodes are deployed in large-scale automated monitoring applications to capture the massive amount of data from various locations in a time-series manner. The captured data are affected due to several factors such as device malfunctioning, unstable communication, environmental factors, synchronization problem, and unreliable nodes, which results in data inconsistency. Data recovery approaches are one of the best solutions to reduce data inconsistency. This research provides a missing data recovery approach based on spatial-temporal (ST) correlation between the IoT nodes in the network. The proposed approach has a clustering phase (CL) and a data recovery (DR) phase. In the CL phase, the nodes can be clustered based on their spatial and temporal relationship, and common neighbors are extracted. In the DR phase, missing data can be recovered with the help of neighbor nodes using the ST-hierarchical long short-term memory (ST-HLSTM) algorithm. The proposed algorithm has been verified on real-world IoT-based hydraulic test rig data sets which are gathered from things speak real-time cloud platform. The algorithm shows approximately 98.5% reliability as compared with the other existing algorithms due to its spatial-temporal features based on deep neural network architecture.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards an IoT Architecture Based on Machine Learning for Missing Data Prediction on the Edge;2023 IEEE 6th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech);2023-11-21

2. Algorithmic Support for Building a Distributed IoT System in a Cloud Service;2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek);2023-10-02

3. Sensor Data Reconstruction for Dynamic Responses of Structures Using External Feedback of Recurrent Neural Network;Sensors;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3