Transcriptome Analysis and Identification of Cadmium-Induced Oxidative Stress Response Genes in Different Meretrix meretrix Developmental Stages

Author:

Xu Yiyuan1,Wu Chenghui1,Jin Jianyu1,Tang Wenhan1,Chen Yuting1,Chang Alan Kueichieh1,Ying Xueping12

Affiliation:

1. College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China

2. National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China

Abstract

Cadmium (Cd) is one of the major pollutants in the aquatic environment, and it can easily accumulate in aquatic animals and result in toxic effects by changing the metabolism of the body, causing a serious impact on the immune system, reproductive system, and the development of offspring. The clam Meretrix meretrix is one of the commercially important species that is cultivated in large-scale aquaculture in China. To elucidate the underlying molecular mechanisms of Cd2+ in the developmental processes, fertilized eggs and larvae of M. meretrix at different developmental stages were exposed to Cd2+ (27.2 mg L−1 in natural seawater) or just natural seawater without Cd2+ (control), and high-throughput transcriptome sequencing and immunohistochemistry techniques were used to analyze the toxic effects of Cd on larvae at different early developmental stages. The results revealed 31,914 genes were differentially expressed in the different stages of M. meretrix development upon treatment with Cd2+. Ten of these genes were differentially expressed in all stages of development examined, but they comprised only six unigenes (CCO, Ndh, HPX, A2M, STF, and pro-C3), all of which were related to the oxidative stress response. Under Cd exposure, the expression levels of CCO and Ndh were significantly upregulated in D-shaped and pediveliger larvae, while pro-C3 expression was significantly upregulated in the fertilized egg, D-shaped larva, and pediveliger. Moreover, HPX, A2M, and STF expression levels in the fertilized egg and pediveliger larvae were also significantly upregulated. In contrast, CCO, Ndh, HPX, A2M, STF, and pro-C3 expression levels in the postlarva were all downregulated under Cd exposure. Besides the genes with changes in expression identified by the transcriptome, the expression of two other oxidative stress-related genes (MT and Nfr2) was also found to change significantly in the different developmental stages of M. meretrix upon Cd exposure, confirming their roles in combating oxidative stress. Overall, the findings of this study indicated that Cd would interfere with cellular respiration, ion transport, and immune response through inducing oxidative stress, and changes in the expression of oxidative stress-related genes might be an important step for M. meretrix to deal with the adverse effects of Cd at different stages of its development.

Funder

National Natural Science Foundation of China

Nature Science Foundation of Zhejiang Province

Nature Science Foundation of Wenzhou

Student Innovation Training Project of Zhejiang Province

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3