Effects of Dietary Fiber Level and Forage Particle Size on Growth, Nutrient Digestion, Ruminal Fermentation, and Behavior of Weaned Holstein Calves under Heat Stress

Author:

Izadbakhsh Mohammad-Hossein1,Hashemzadeh Farzad1ORCID,Alikhani Masoud1,Ghorbani Gholam-Reza1,Khorvash Mohammad1,Heidari Mostafa1,Ghaffari Morteza Hosseini2ORCID,Ahmadi Farhad34

Affiliation:

1. Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran

2. Institute of Animal Science, University of Bonn, 53115 Bonn, Germany

3. School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia

4. Department of Eco-Friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea

Abstract

This experiment was designed to investigate the effects of feeding diets with different fiber content and forage particle size on the performance, health, nutrient digestion, rumen fermentation, and behavioral and sorting activity of Holstein dairy calves kept under elevated environmental temperature. Sixty weaned Holstein female calves (age = 96.7 ± 7.62 days old; body weight = 82.4 ± 10.4 kg) were randomly assigned to one of 4 treatments arranged in a 2-by-2 factorial design in a 70-day experiment. Dietary forage content (moderate, 22.5%; or high, 40.0% on DM basis) and alfalfa hay particle size (short, 4.39 mm; or long, 7.22 mm as geometric mean) were the experimental factors, resulting in the following combinations: (1) high-fiber (HF) diets with forage-to-concentrate ratio of 40:60 and long particle-sized alfalfa hay (LPS; HF-LPS); (2) HF diets with short particle-sized alfalfa hay (SPS; HF-SPS); (3) moderate-fiber (MF) diets with forage-to-concentrate ratio of 22.5:77.5 with LPS (MF-LPS); and (4) MF diets with SPS (MF-SPS). The temperature–humidity index averaged 73.0 ± 1.86, indicating that weaned calves experienced a moderate extent of heat stress. Fiber level and AH particle size interacted and affected dry matter intake, with the greatest intake (4.83 kg/d) observed in MF-SPS-fed calves. Final body weight was greater in calves receiving MF vs. HF diets (164 vs. 152 kg; p < 0.01). Respiration rate decreased when SPS vs. LPS AH was included in HF but not MF diet. Lower rectal temperature was recorded in calves fed MF vs. HF diet. Digestibility of dry matter and crude protein was greater in calves fed MF than HF diets, resulting in lower ruminal pH (6.12 vs. 6.30; p = 0.03). Fiber digestibility was greater in calves fed SPS compared with those fed LPS alfalfa hay. Feeding HF compared with MF diet increased acetate but lowered propionate molar proportions. The inclusion of SPS vs. LPS alfalfa hay decreased lying time in HF diet (920 vs. 861 min; p < 0.01). Calves fed MF vs. HF diets spent less time eating but more time lying, which is likely indicative of better animal comfort. Dietary fiber level and forage particle size interacted and affected sorting against 19 mm particles, the extent of which was greater in HF-SPS diet. Overall, dietary fiber level had a stronger effect than forage particle size on the performance of weaned calves exposed to a moderate degree of heat stress as feeding MF vs. HF diet resulted in greater feed intake, final body weight, structural growth measures, nutrient digestion, as well as longer lying behavior. The inclusion of SPS alfalfa hay in MF diets increased feed consumption.

Funder

Isfahan University of Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the feed efficiency of crop residues in ruminants: a comprehensive review;Annals of Animal Science;2024-09-07

2. Heat Stress Mitigation through Feeding and Nutritional Interventions in Ruminants;Latest Scientific Findings in Ruminant Nutrition - Research for Practical Implementation [Working Title];2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3