Transcriptome Analysis of Brain and Skin Reveals Immune Responses to Acute Hypoxia and Reoxygenation in Pseudobagrus ussuriensis

Author:

Liu Qing1,Li Yuxing1,Cao Yang1,Gu Libo1,Li Tongyao1,Liu Yu1,Song Jing1,Wang Weiwei1,Wang Xianzong1,Li Bugao1ORCID,Liu Shaozhen12ORCID

Affiliation:

1. College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China

2. Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030800, China

Abstract

Pseudobagrus ussuriensis is an unscaled fish that is more susceptible to skin damage than scaled fish. To investigate the impacts of hypoxia and reoxygenation on skin and brain immunity, juvenile P. ussuriensis were subjected to hypoxia conditions (DO: 0.8 ± 0.05 mg/L) for durations of 0, 3, 6, and 12 h, followed by 12 h of reoxygenation (DO > 6 mg/L). Histological analysis showed a significant increase in the number of skin mucosal cells after 12 h of hypoxia and a significant decrease after 12 h of reoxygenation when compared to the control group. As the duration of hypoxia increased, an increase in antioxidant (SOD, CAT, GSH, MDA) and immune (cortisol, LZM) physiological parameters of the skin and brain appeared. The results of transcriptomic studies showed that the number of differential genes was greater in skin than in brain. Most of the immune pathways in both tissues under hypoxia conditions were all nonspecific immunity (TNF, IL-17, chemokines), while both tissues maintained their homeostasis through active energy supply and cell cycle regulation. Meanwhile, both physiological parameters and RNA transcriptome results showed that 12 h of reoxygenation could not completely eliminate the negative effects of 12 h of hypoxia. This study offers new insights into the immune responses of P. ussuriensis skin and brain during acute hypoxia and reoxygenation.

Funder

Biological Breeding Project of Shanxi Agricultural University

Natural Science Foundation of Shanxi Province

National Natural Science Foundation of China

“1331 Project” Key Discipline of Animal Science of Shanxi Province

Earmarked Fund for Modern Agro-industry Technology Research System of Shanxi Province

International Science and Technology Cooperation Programme of the Ministry of Science and Technology of China

Shanxi Key Laboratory of Animal Genetic Resources Utilization and Breeding

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3