The Establishment and Optimization of a Chicken Primordial Germ Cell Induction Model Using Small-Molecule Compounds

Author:

Gong Wei12,Zhao Juanjuan12,Yao Zeling12,Zhang Yani12ORCID,Niu Yingjie12,Jin Kai12,Li Bichun12ORCID,Zuo Qisheng12

Affiliation:

1. Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

2. Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

Abstract

In recent years, inducing pluripotent stem cells to differentiate into functional primordial germ cells (PGCs) in vitro has become an important method of obtaining a large number of PGCs. However, the instability and low induction efficiency of the in vitro PGC induction system restrict the application of PGCs in transgenic animal production, germplasm resource conservation and other fields. In this study, we successfully established a two-step induction model of chicken PGCs in vitro, which significantly improved the formation efficiency of PGC-like cells (PGCLCs). To further improve the PGC formation efficiency in vitro, 5025 differentially expressed genes (DEGs) were obtained between embryonic stem cells (ESCs) and PGCs through RNA-seq. GO and KEGG enrichment analysis revealed that signaling pathways such as BMP4, Wnt and Notch were significantly activated during PGC formation, similar to other species. In addition, we noted that cAMP was activated during PGC formation, while MAPK was suppressed. Based on the results of our analysis, we found that the PGC formation efficiency was significantly improved after activating Wnt and inhibiting MAPK, and was lower than after activating cAMP. To sum up, in this study, we successfully established a two-step induction model of chicken PGCs in vitro with high PGC formation efficiency, which lays a theoretical foundation for further demonstrating the regulatory mechanism of PGCs and realizing their specific applications.

Funder

Excellent Youth Foundation of Jiangsu

National Natural Science Foundation of China

International Science and Technology Cooperation Projects of Yangzhou

China Postdoctoral Science Foundation

Yangzhou international Science and Technology Cooperation Projects

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3