Toxic Effects of Bisphenol AF Exposure on the Reproduction and Liver of Female Marine Medaka (Oryzias melastigma)

Author:

Li Huichen1,Gao Jiahao1,Liu Yue1,Ding Yujia1,Guo Yusong1,Wang Zhongduo1ORCID,Dong Zhongdian12ORCID,Zhang Ning1ORCID

Affiliation:

1. Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China

2. Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

In recent years, bisphenol AF (BPAF) in aquatic environments has drawn attention to its ecological risks. This study aims to investigate the toxic effects of BPAF (188.33 μg/L) exposure for 30 days on female marine medaka (Oryzias melastigma). On the 10th and 30th day of exposure, the toxicity was evaluated using histological analysis of the liver and ovaries and the transcription levels of genes related to the antioxidant system, immune system, and hypothalamic-pituitary-gonadal (HPG) axis. Findings revealed that (1) BPAF exposure caused vacuolation, karyopyknosis and karyolysis in the liver of marine medaka, and the toxic impact augmented with duration; (2) exposure to BPAF for 10 days facilitated the growth and maturation of primary ova, and this exposure had a comparatively inhibitory effect after 30 days; (3) exposure to BPAF resulted in a biphasic regulation of the transcriptional abundance of genes involved in antioxidant and inflammatory response (e.g., il-8, cat), with an initial up-regulation followed by down-regulation. Additionally, it disrupted the transcriptional pattern of HPG axis-related genes (e.g., 3βhsd, arα). In conclusion, 188.33 μg/L BPAF can alter the expression levels of functionally related genes, impair the structural integrity of marine organisms, and pose a threat to their overall health.

Funder

National Natural Science Foundation of China

Nanhai Scholar Project of Guangdong Ocean University

Postgraduate Education Innovation Project of Guangdong Ocean University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3