Recovery of Elemental Arsenic from Acidic As-Containing Wastewater by a Hypophosphite Reduction Process

Author:

Li Qian1,Zhao Shiyu1,Zhang Yan1ORCID,Li Yong1,Liu Xiaoliang2ORCID,Yang Yongbin1

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

2. Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China

Abstract

Biological oxidation is a low-carbon technology for the treatment of As-containing gold ores, but it causes a large amount of acidic As-containing wastewater that is harmful to the environment. This paper proposed a novel, eco-friendly method to treat this wastewater. Thermodynamic analysis, H2PO2− reduction, and wastewater recycling tests were conducted. Thermodynamic analysis indicates the feasibility of the reduction of As(V)/As(III) by H2PO2− or H3PO2 to As0 under acidic conditions. Experimental results confirmed the thermodynamic prediction and showed that H2PO2− could efficiently convert the As (i.e., As(V)/As(III)) in the wastewater to high value-added As0. Under the optimal conditions, 99.61% of As precipitated out, and the obtained As0 had a high purity of 98.5%. Kinetic results showed that the reaction order of H2PO2− concentration was 0.6399, and the activation energy of the H2PO2− reduction process was 34.33 kJ/mol, which is indicative of a mixed-controlled process (20–40 kJ/mol). Wastewater recycling results showed that after recovering As, the wastewater could be reused as a bacterial culture medium. Based on the thermodynamic analysis and experimental and analytical results, hypophosphite reduction mechanisms for removing and recovering As from its acidic wastewater were proposed. The results presented in this paper suggest the feasibility of this one-step H2PO2− reduction approach, which may be promising in treating acidic As-containing wastewater.

Funder

the Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3