Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model

Author:

Rubio LihkiORCID,Alba KeylaORCID

Abstract

Forecasting future values of Colombian companies traded on the New York Stock Exchange is a daily challenge for investors, due to these stocks’ high volatility. There are several forecasting models for forecasting time series data, such as the autoregressive integrated moving average (ARIMA) model, which has been considered the most-used regression model in time series prediction for the last four decades, although the ARIMA model cannot estimate non-linear regression behavior caused by high volatility in the time series. In addition, the support vector regression (SVR) model is a pioneering machine learning approach for solving nonlinear regression estimation procedures. For this reason, this paper proposes using a hybrid model benefiting from ARIMA and support vector regression (SVR) models to forecast daily and cumulative returns of selected Colombian companies. For testing purposes, close prices of Bancolombia, Ecopetrol, Tecnoglass, and Grupo Aval were used; these are relevant Colombian organizations quoted on the New York Stock Exchange (NYSE).

Funder

Universidad del Norte de Barranquilla

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. Estructura y evolución del sistema financiero colombiano de la banca comercial a la banca de inversión;Cuartas;Modum Rev. Divulg. Multidiscip. Cienc. Tecnol. Innov.,2017

2. Predicción de precios de acciones de bolsa de valores utilizando support vector regression

3. Análisis de las Acciones Emitidas por Grupo Bancolombia en la Bolsa de Valores De Colombia, de Cara a una Crisis Económica y Sanitaria http://hdl.handle.net/20.500.12495/5445

4. Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques

5. Exchange Rate Forecasting Using Ensemble Modeling for Better Policy Implications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3