Abstract
A new class of high-performance preconditioned iterative solution methods for large-scale finite element method (FEM) elliptic systems is proposed and analyzed. The non-overlapping domain decomposition (DD) naturally introduces coupling operator at the interface γ. In general, γ is a manifold of lower dimensions. At the operator level, a key property is that the energy norm associated with the Steklov-Poincaré operator is spectrally equivalent to the Sobolev norm of index 1/2. We define the new multiplicative non-overlapping DD preconditioner by approximating the Schur complement using the best uniform rational approximation (BURA) of Lγ1/2. Here, Lγ1/2 denotes the discrete Laplacian over the interface γ. The goal of the paper is to develop a unified framework for analysis of the new class of preconditioned iterative methods. As a final result, we prove that the BURA-based non-overlapping DD preconditioner has optimal computational complexity O(n), where n is the number of unknowns (degrees of freedom) of the FEM linear system. All theoretical estimates are robust, with respect to the geometry of the interface γ. Results of systematic numerical experiments are given at the end to illustrate the convergence properties of the new method, as well as the choice of the involved parameters.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of BURA and BURA-based approximations of fractional powers of sparse SPD matrices;Fractional Calculus and Applied Analysis;2024-03-04
2. Comparative analysis of BURA based preconditioning of fractional Laplacian;THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living;2023