A Neural Network Model Secret-Sharing Scheme with Multiple Weights for Progressive Recovery

Author:

Wang XianhuiORCID,Shan Hong,Yan XuehuORCID,Yu LongORCID,Yu YongqiangORCID

Abstract

With the widespread use of deep-learning models in production environments, the value of deep-learning models has become more prominent. The key issues are the rights of the model trainers and the security of the specific scenarios using the models. In the commercial domain, consumers pay different fees and have access to different levels of services. Therefore, dividing the model into several shadow models with multiple weights is necessary. When holders want to use the model, they can recover the model whose performance corresponds to the number and weights of the collected shadow models so that access to the model can be controlled progressively, i.e., progressive recovery is significant. This paper proposes a neural network model secret sharing scheme (NNSS) with multiple weights for progressive recovery. The scheme uses Shamir’s polynomial to control model parameters’ sharing and embedding phase, which in turn enables hierarchical performance control in the secret model recovery phase. First, the important model parameters are extracted. Then, effective shadow parameters are assigned based on the holders’ weights in the sharing phase, and t shadow models are generated. The holders can obtain a sufficient number of shadow parameters for recovering the secret parameters with a certain probability during the recovery phase. As the number of shadow models obtained increases, the probability becomes larger, while the performance of the extracted models is related to the participants’ weights in the recovery phase. The probability is proportional to the number and weights of the shadow models obtained in the recovery phase, and the probability of the successful recovery of the shadow parameters is 1 when all t shadow models are obtained, i.e., the performance of the reconstruction model can reach the performance of the secret model. A series of experiments conducted on VGG19 verify the effectiveness of the scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3