Application of ANN in Induction-Motor Fault-Detection System Established with MRA and CFFS

Author:

Lee Chun-YaoORCID,Wen Meng-Syun,Zhuo Guang-LinORCID,Le Truong-AnORCID

Abstract

This paper proposes a fault-detection system for faulty induction motors (bearing faults, interturn shorts, and broken rotor bars) based on multiresolution analysis (MRA), correlation and fitness values-based feature selection (CFFS), and artificial neural network (ANN). First, this study compares two feature-extraction methods: the MRA and the Hilbert Huang transform (HHT) for induction-motor-current signature analysis. Furthermore, feature-selection methods are compared to reduce the number of features and maintain the best accuracy of the detection system to lower operating costs. Finally, the proposed detection system is tested with additive white Gaussian noise, and the signal-processing method and feature-selection method with good performance are selected to establish the best detection system. According to the results, features extracted from MRA can achieve better performance than HHT using CFFS and ANN. In the proposed detection system, CFFS significantly reduces the operation cost (95% of the number of features) and maintains 93% accuracy using ANN.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3