Abstract
In this article, we present the fuzzy Adomian decomposition method (ADM) and fuzzy modified Laplace decomposition method (MLDM) to obtain the solutions of fuzzy fractional Navier–Stokes equations in a tube under fuzzy fractional derivatives. We have looked at the turbulent flow of a viscous fluid in a tube, where the velocity field is a function of only one spatial coordinate, in addition to time being one of the dependent variables. Furthermore, we investigate the fuzzy Elzaki transform, and the fuzzy Elzaki decomposition method (EDM) applied to solving fuzzy linear-nonlinear Schrodinger differential equations. The proposed method worked perfectly without any need for linearization or discretization. Finally, we compared the fuzzy reduced differential transform method (RDTM) and fuzzy homotopy perturbation method (HPM) to solving fuzzy heat-like and wave-like equations with variable coefficients. The RDTM and HPM solutions are simpler than other already existing methods. Several examples are provided to illustrate the methods that have been offered. The results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. These studies are important in the context of the development of the theory of fuzzy partial differential equations.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献