Tuning Machine Learning Models Using a Group Search Firefly Algorithm for Credit Card Fraud Detection

Author:

Jovanovic DijanaORCID,Antonijevic MilosORCID,Stankovic MilosORCID,Zivkovic MiodragORCID,Tanaskovic MarkoORCID,Bacanin NebojsaORCID

Abstract

Recent advances in online payment technologies combined with the impact of the COVID-19 global pandemic has led to a significant escalation in the number of online transactions and credit card payments being executed every day. Naturally, there has also been an escalation in credit card frauds, which is having a significant impact on the banking institutions, corporations that issue credit cards, and finally, the vendors and merchants. Consequently, there is an urgent need to implement and establish proper mechanisms that can secure the integrity of online card transactions. The research presented in this paper proposes a hybrid machine learning and swarm metaheuristic approach to address the challenge of credit card fraud detection. The novel, enhanced firefly algorithm, named group search firefly algorithm, was devised and then used to a tune support vector machine, an extreme learning machine, and extreme gradient-boosting machine learning models. Boosted models were tested on the real-world credit card fraud detection dataset, gathered from the transactions of the European credit card users. The original dataset is highly imbalanced; to further analyze the performance of tuned machine learning models, in the second experiment performed for the purpose of this research, the dataset has been expanded by utilizing the synthetic minority over-sampling approach. The performance of the proposed group search firefly metaheuristic was compared with other recent state-of-the-art approaches. Standard machine learning performance indicators have been used for the evaluation, such as the accuracy of the classifier, recall, precision, and area under the curve. The experimental findings clearly demonstrate that the models tuned by the proposed algorithm obtained superior results in comparison to other models hybridized with competitor metaheuristics.

Funder

Science Fund of the Republic of Serbia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3