Abstract
The analysis of air pollution behavior is becoming crucial, where information on air pollution behavior is vital for managing air quality events. Many studies have described the stochastic behavior of air pollution based on the Markov chain (MC) models. Fitting the optimum order of MC models is essential for describing the stochastic process. However, uncertainty remains concerning the optimum order of such models for representing and characterizing air pollution index (API) data. In this study, the optimum order of the MC models for hourly and daily API sequences from seven stations in the central region of Peninsular Malaysia is identified, based on the Bayesian information criteria (BIC), contributing to exploring an adequate explanation of the probabilistic dependence of air pollution. A summary of the statistics for the API was calculated prior to the analysis. The Markov property and the divergence for the empirically estimated transition matrix of an MC sequence are also investigated. It is found from the analysis that the optimum order varies from one station to another. At most stations, for both observed and simulated API data, the second and third orders of the MC models are found to be optimum for hourly API occurrences, while the first-order MC is found to be most fitting for describing the dynamics of the daily API. Overall, fitting the optimum order of the MC model for the API data sequence captured the delay effect of air pollution. Accordingly, we concluded that the air quality standard lies within controllable limits, except for some infrequent occurrences of API values exceeding the unhealthy level.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献