Bayesian Information Criterion for Fitting the Optimum Order of Markov Chain Models: Methodology and Application to Air Pollution Data

Author:

Alyousifi Yousif,Ibrahim Kamarulzaman,Othamn MahmodORCID,Zin Wan Zawiah Wan,Vergne Nicolas,Al-Yaari AbdullahORCID

Abstract

The analysis of air pollution behavior is becoming crucial, where information on air pollution behavior is vital for managing air quality events. Many studies have described the stochastic behavior of air pollution based on the Markov chain (MC) models. Fitting the optimum order of MC models is essential for describing the stochastic process. However, uncertainty remains concerning the optimum order of such models for representing and characterizing air pollution index (API) data. In this study, the optimum order of the MC models for hourly and daily API sequences from seven stations in the central region of Peninsular Malaysia is identified, based on the Bayesian information criteria (BIC), contributing to exploring an adequate explanation of the probabilistic dependence of air pollution. A summary of the statistics for the API was calculated prior to the analysis. The Markov property and the divergence for the empirically estimated transition matrix of an MC sequence are also investigated. It is found from the analysis that the optimum order varies from one station to another. At most stations, for both observed and simulated API data, the second and third orders of the MC models are found to be optimum for hourly API occurrences, while the first-order MC is found to be most fitting for describing the dynamics of the daily API. Overall, fitting the optimum order of the MC model for the API data sequence captured the delay effect of air pollution. Accordingly, we concluded that the air quality standard lies within controllable limits, except for some infrequent occurrences of API values exceeding the unhealthy level.

Funder

YUTP cost center grant

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3