InSAR-DEM Block Adjustment Model for Upcoming BIOMASS Mission: Considering Atmospheric Effects

Author:

Wu Kefu1ORCID,Fu Haiqiang1,Zhu Jianjun1,Hu Huacan1ORCID,Li Yi1ORCID,Liu Zhiwei1,Wan Afang2,Wang Feng2

Affiliation:

1. School of Geoscience and Info-Physics, Central South University, Changsha 410083, China

2. The First Institute of Surveying and Mapping of Hunan Province, Changsha 410002, China

Abstract

The unique P-band synthetic aperture radar (SAR) instrument, BIOMASS, is scheduled for launch in 2024. This satellite will enhance the estimation of subcanopy topography, owing to its strong penetration and fully polarimetric observation capability. In order to conduct global-scale mapping of the subcanopy topography, it is crucial to calibrate systematic errors of different strips through interferometric SAR (InSAR) DEM (digital elevation model) block adjustment. Furthermore, the BIOMASS mission will operate in repeat-pass interferometric mode, facing the atmospheric delay errors introduced by changes in atmospheric conditions. However, the existing block adjustment methods aim to calibrate systematic errors in bistatic mode, which can avoid possible errors from atmospheric effects through interferometry. Therefore, there is still a lack of systematic error calibration methods under the interference of atmospheric effects. To address this issue, we propose a block adjustment model considering atmospheric effects. Our model begins by employing the sub-aperture decomposition technique to form forward-looking and backward-looking interferograms, then multi-resolution weighted correlation analysis based on sub-aperture interferograms (SA-MRWCA) is utilized to detect atmospheric delay errors. Subsequently, the block adjustment model considering atmospheric effects can be established based on the SA-MRWCA. Finally, we use robust Helmert variance component estimation (RHVCE) to build the posterior stochastic model to improve parameter estimation accuracy. Due to the lack of spaceborne P-band data, this paper utilized L-band Advanced Land Observing Satellite (ALOS)-1 PALSAR data, which is also long-wavelength, to emulate systematic error calibration of the BIOMASS mission. We chose climatically diverse inland regions of Asia and the coastal regions of South America to assess the model’s effectiveness. The results show that the proposed block adjustment model considering atmospheric effects improved accuracy by 72.2% in the inland test site, with root mean square error (RMSE) decreasing from 10.85 m to 3.02 m. Moreover, the accuracy in the coastal test site improved by 80.2%, with RMSE decreasing from 16.19 m to 3.22 m.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Research Foundation of the Department of Natural Resources of Hunan Province

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3