Lightweight Super-Resolution Generative Adversarial Network for SAR Images

Author:

Jiang Nana1,Zhao Wenbo1,Wang Hui2,Luo Huiqi1,Chen Zezhou1,Zhu Jubo1

Affiliation:

1. School of Artificial Intelligence, Sun Yat-sen University, Zhuhai 519000, China

2. Shanghai Key Laboratory of Remote Sensing and Millimeter Wave Information Acquisition and Application Technology, Shanghai Institute of Satellite Engineering, Shanghai 201109, China

Abstract

Due to a unique imaging mechanism, Synthetic Aperture Radar (SAR) images typically exhibit degradation phenomena. To enhance image quality and support real-time on-board processing capabilities, we propose a lightweight deep generative network framework, namely, the Lightweight Super-Resolution Generative Adversarial Network (LSRGAN). This method introduces Depthwise Separable Convolution (DSConv) in residual blocks to compress the original Generative Adversarial Network (GAN) and uses the SeLU activation function to construct a lightweight residual module (LRM) suitable for SAR image characteristics. Furthermore, we combine the LRM with an optimized Coordinated Attention (CA) module, enhancing the lightweight network’s capability to learn feature representations. Experimental results on spaceborne SAR images demonstrate that compared to other deep generative networks focused on SAR image super-resolution reconstruction, LSRGAN achieves compression ratios of 74.68% in model storage requirements and 55.93% in computational resource demands. In this work, we significantly reduce the model complexity, improve the quality of spaceborne SAR images, and validate the effectiveness of the SAR image super-resolution algorithm as well as the feasibility of real-time on-board processing technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference53 articles.

1. Xu, F., and Jin, Y.Q. (J. Radars, 2024). Microwave vision and intelligent perception of radar imagery, J. Radars, in press.

2. Change detection of high resolution SAR images by the fusion of coherent/incoherent information;Yang;J. Radars,2015

3. Wang, Z.M., Zhu, J.B., and Xie, M.H. (2013). Technique of SAR Image Super-Resolution, Science Press. [2nd ed.].

4. Example-based super-resolution;Freeman;IEEE Comput. Graph. Appl.,2002

5. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization;Dong;IEEE Trans. Image Process.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3