ERNet: A Rapid Road Crack Detection Method Using Low-Altitude UAV Remote Sensing Images

Author:

Duan Zexian1,Liu Jiahang1ORCID,Ling Xinpeng1,Zhang Jinlong1,Liu Zhiheng1

Affiliation:

1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

The rapid and accurate detection of road cracks is of great significance for road health monitoring, but currently, this work is mainly completed through manual site surveys. Low-altitude UAV remote sensing can provide images with a centimeter-level or even subcentimeter-level ground resolution, which provides a new, efficient, and economical approach for rapid crack detection. Nevertheless, crack detection networks face challenges such as edge blurring and misidentification due to the heterogeneity of road cracks and the complexity of the background. To address these issues, we proposed a real-time edge reconstruction crack detection network (ERNet) that adopted multi-level information aggregation to reconstruct crack edges and improve the accuracy of segmentation between the target and the background. To capture global dependencies across spatial and channel levels, we proposed an efficient bilateral decomposed convolutional attention module (BDAM) that combined depth-separable convolution and dilated convolution to capture global dependencies across the spatial and channel levels. To enhance the accuracy of crack detection, we used a coordinate-based fusion module that integrated spatial, semantic, and edge reconstruction information. In addition, we proposed an automatic measurement of crack information for extracting the crack trunk and its corresponding length and width. The experimental results demonstrated that our network achieved the best balance between accuracy and inference speed compared to six established models.

Funder

Innovative talent program of Jiangsu

Nanjing University of Aeronautics and Astronautics

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3