AIMED-Net: An Enhancing Infrared Small Target Detection Net in UAVs with Multi-Layer Feature Enhancement for Edge Computing

Author:

Pan Lehao1,Liu Tong1,Cheng Jianghua1,Cheng Bang1,Cai Yahui1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

In the context of small unmanned aerial vehicles (UAVs), infrared imaging faces challenges such as low quality, difficulty in detecting small targets, high false alarm rates, and computational resource constraints. To address these issues, we introduce AIMED-Net, an enhancing infrared small target detection net in UAVs with multi-layer feature enhancement for edge computing. Initially, the network encompasses a multi-layer feature enhancement architecture for infrared small targets, including a generative adversarial-based shallow-feature enhancement network and a detection-oriented deep-feature enhancement network. Specifically, an infrared image-feature enhancement method is proposed for the shallow-feature enhancement network, employing multi-scale enhancement to bolster target detection performance. Furthermore, within the YOLOv7 framework, we have developed an improved object detection network integrating multiple feature enhancement techniques, optimized for infrared targets and edge computing conditions. This design not only reduces the model’s complexity but also enhances the network’s robustness and accuracy in identifying small targets. Experimental results obtained from the HIT-UAV public dataset indicate that, compared to YOLOv7s, our method achieves a 2.5% increase in F1 score, a 6.1% rise in AP for detecting OtherVehicle targets, and a 2.6% improvement in mAP across all categories, alongside a 15.2% reduction in inference time on edge devices. Compared to existing state-of-the-art approaches, our method strikes a balance between detection efficiency and accuracy, presenting a practical solution for deployment in aerial edge computing scenarios.

Funder

Natural Science Foundation of Hunan Province, China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3