Hybrid Machine Learning and Geostatistical Methods for Gap Filling and Predicting Solar-Induced Fluorescence Values

Author:

Tadić Jovan M.1ORCID,Ilić Velibor2ORCID,Ilić Slobodan2ORCID,Pavlović Marko2ORCID,Tadić Vojin3ORCID

Affiliation:

1. Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2. Institute for Artificial Intelligence Research and Development of Serbia, 21000 Novi Sad, Serbia

3. Mining and Metallurgy Institute Bor, 19210 Bor, Serbia

Abstract

Sun-induced chlorophyll fluorescence (SIF) has proven to be advantageous in estimating gross primary production, despite the lack of a stable relationship. Satellite-based SIF measurements at Level 2 offer comprehensive global coverage and are available in near real time. However, these measurements are often limited by spatial and temporal sparsity, as well as discontinuities. These limitations primarily arise from incomplete satellite trajectories. Additionally, variability in cloud cover and periodic issues specific to the instruments can compromise data quality. Two families of methods have been developed to address data discontinuity: (1) machine learning-based gap-filling techniques and (2) geostatistical techniques (various forms of kriging). The former techniques utilize the relationships between ancillary data and SIF, while the latter usually rely on the available SIF data recordings and their covariance structure to provide estimates at unsampled locations. In this study, we create a synthetic approach for SIF gap filling by hybridizing the two approaches under the umbrella of kriging with external drift. We performed leave-one-out cross-validation of the OCO-2 SIF retrieval aggregates for the entire year of 2019, comparing three methods: ordinary kriging, ML-based estimation using ancillary data, and kriging with external drift. The Mean Absolute Error (MAE) for ML, ordinary kriging, and the hybrid approach was found to be 0.1399, 0.1318, and 0.1183 mW m2 sr−1 nm−1, respectively. We demonstrate that the performance of the hybrid approach exceeds both parent techniques due to the incorporation of information from multiple resources. This use of multiple datasets enriches the hybrid model, making it more robust and accurate in handling the spatio-temporal variability and discontinuity of SIF data. The developed framework is portable and can be applied to SIF retrievals at various resolutions and from various sources (satellites), as well as extended to other satellite-measured variables.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3