Leveraging LiDAR-Based Simulations to Quantify the Complexity of the Static Environment for Autonomous Vehicles in Rural Settings

Author:

Abohassan Mohamed1,El-Basyouny Karim1

Affiliation:

1. Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

This paper uses virtual simulations to examine the interaction between autonomous vehicles (AVs) and their surrounding environment. A framework was developed to estimate the environment’s complexity by calculating the real-time data processing requirements for AVs to navigate effectively. The VISTA simulator was used to synthesize viewpoints to replicate the captured environment accurately. With an emphasis on static physical features, roadways were dissected into relevant road features (RRFs) and full environment (FE) to study the impact of roadside features on the scene complexity and demonstrate the gravity of wildlife–vehicle collisions (WVCs) on AVs. The results indicate that roadside features substantially increase environmental complexity by up to 400%. Increasing a single lane to the road was observed to increase the processing requirements by 12.3–16.5%. Crest vertical curves decrease data rates due to occlusion challenges, with a reported average of 4.2% data loss, while sag curves can increase the complexity by 7%. In horizontal curves, roadside occlusion contributed to severe loss in road information, leading to a decrease in data rate requirements by as much as 19%. As for weather conditions, heavy rain increased the AV’s processing demands by a staggering 240% when compared to normal weather conditions. AV developers and government agencies can exploit the findings of this study to better tailor AV designs and meet the necessary infrastructure requirements.

Funder

NSERC Alliance

Alberta Innovates

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3