Transcriptomic and Anatomic Profiling Reveal Etiolation Promotes Adventitious Rooting by Exogenous Application of 1-Naphthalene Acetic Acid in Robinia pseudoacacia L.

Author:

Munir Muhammad Zeeshan,Ud Din SaleemORCID,Imran MuhammadORCID,Zhang Zijie,Pervaiz Tariq,Han Chao,Un Nisa Zaib,Bakhsh AliORCID,Atif Muneer MuhammadORCID,Sun Yuhan,Li YunORCID

Abstract

The process of etiolation contributes significantly to vegetative propagation and root formation of woody plants. However, the molecular interaction pattern of different factors for etiolated adventitious root development in woody plants remains unclear. In the present study, we explored the changes at different etiolation stages of adventitious root formation in Robinia pseudoacacia. Histological and transcriptomic analyses were performed for the etiolated lower portion of hypocotyls to ascertain the adventitious root responses. We found that the dark-treated hypocotyls formed roots earlier than the control. Exogenous application of NAA (0.3 mg/L) stimulated the expressions of about 310 genes. Among these, 155 were upregulated and 155 were downregulated. Moreover, differentially expressed genes (DEGs) were significantly enriched in multiple pathways, including the biosynthesis of secondary metabolites, metabolic pathway, plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and carbon metabolism. These pathways could play a significant role during adventitious root formation in etiolated hypocotyls. The findings of this study can provide novel insights and a foundation for further studies to elucidate the connection between etiolation and adventitious root formation in woody plants.

Publisher

MDPI AG

Subject

Forestry

Reference86 articles.

1. http://doi.org/10.21203/rs.2.10375/v1

2. Black Locust (Robinia pseudoacacia L.) Growing in Hungary;Rédei,1998

3. Improvement of black locust (Robinia pseudoacacia L.) growing under marginal site conditions in Hungary: case studies

4. Adventitious rooting of conifers: influence of physical and chemical factors

5. Research on cuttage of tetraploid black locust (Robinia pseudoacacia L.) hardwood treated by low temperature sand storage and plant growth regulator;Meng;Heilongjiang Agric. Sc.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3