Cellulose δ18O of Tree Rings Reflects Vapour Pressure Variations in the Ordos Plateau

Author:

Liu Wentai,Li QiangORCID,Song Huiming,Deng Ruolan,Liu Yu

Abstract

In arid and semi-arid regions, a better understanding of the effect of climate change mechanisms on environmental evolution can be used to guide regional ecological conservation and to improve water resource availability. Increased aridity in arid and semi-arid regions considerably affects the physiological functions of plants and the exchange of carbon and water with the environment. We collected Pinus tabuliformis Carr. samples from Ordos, Inner Mongolia, and measured their δ18O variations. Vapour pressure (VP) was the main factor dominating δ18O variations from July to August, indicating the regulatory role of plant leaf stomata. Based on the δ18O series in the Ordos region, we reconstructed VP variations for July–August (VPJA) for the past 205 years. Spatial analysis showed the reconstruction as spatially highly representative. VP variations in the Ordos region mainly reflected precipitation variations and did not show a significant correlation with temperature. Since the late 1950s, VP has been decreasing, which is related to the weakening of the Asian monsoon. The results of reconstruction decomposed using ensemble empirical mode decomposition showed that El Niño–Southern Oscillation may affect VP in the study area, and the effect of sea surface temperature on the central and eastern Pacific Ocean in the Ordos region may lead to an increase in the drought.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Forestry

Reference56 articles.

1. Summary for policymakers, in climate change 2013: The physical science basis,2013

2. Dendrochronology in climatology – the state of the art

3. Tree-ring variables as proxy-climate indicators: Problems with low-frequency signals;Briffa,1996

4. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies;Esper;Tree-Ring Res.,2003

5. Stable oxygen isotope composition of plant tissue: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3