Comparison of a Floating Cylinder with Solid and Water Ballast

Author:

Gabl RomanORCID,Davey ThomasORCID,Nixon Edd,Steynor Jeffrey,Ingram David M.ORCID

Abstract

Modelling and understanding the motion of water filled floating objects is important for a wide range of applications including the behaviour of ships and floating platforms. Previous studies either investigated only small movements or applied a very specific (ship) geometry. The presented experiments are conducted using the simplified geometry of an open topped hollow cylinder ballasted to different displacements. Regular waves are used to excite the floating structure, which exhibits rotation angles of over 20 degrees and a heave motion double that of the wave amplitude. Four different drafts are investigated, each with two different ballast options: with (water) and without (solid) a free surface. The comparison shows a small difference in the body’s three translational motions as well as the rotation around the normal axis to the water surface. Significant differences are observed in the rotation about the wave direction comparable to parametric rolling as seen in ships. The three bigger drafts with free surface switch the dominant global rotation direction from pitch to roll, which can clearly be attributed to the sloshing of the internal water. The presented study provides a new dataset and comparison of varying ballast types on device motions, which may be used for future validation experiments.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3