Interplay between Asian Monsoon and Tides Affects the Plume Dispersal of the New Hu-Wei River off the Coast of Midwest Taiwan

Author:

Ho Chia-Ying,Fang Tien-Hsi,Wu Cheng-Han,Lee Hung-JenORCID

Abstract

In the coupled estuary–shelf system, plumes originating from the New Hu-Wei and Choshui rivers, consisting of many terrestrial materials, could contaminate the water of the Mailiao industrial harbor. To determine the contribution of the two rivers to pollution, the interaction between river-forced, tide-generating, and monsoon-driven water motions in and around the Mailiao industrial zone harbor was examined by performing a series of numerical model experiments. We used a three-dimensional general circulation model to examine the interplay between Asian monsoon-driven, river-forced, and tide-induced water motions, one of which could primarily affect the plume. The model-derived results for different river discharges revealed that almost all of the ammonium entering the harbor had a slope-positive trend, with oscillations in response to flood–ebb tidal cycles. The ammonium increased with time and flux, except for the 10 m3/s flux. Although the river discharge flux exceeded 200 m3/s, the ammonium entering the harbor was the same as that of the 200 m3/s flux; the ammonium concentration did not increase significantly with time after the flux exceeded 200 m3/s. In addition, irrespective of flood or ebb tidal currents being suppressed by strong Asian monsoons, this mechanism avoided contaminating the water quality of the harbor while northeasterly winds prevailed. By contrast, the southwesterly monsoon drove the geostrophic current northward along the coast; concurrently, the coastal sea level increased to form the surface isobar slope up toward the coast, producing a secondary flow to accelerate geostrophic alongshore currents. The northward geostrophic currents compressed the plumes shoreward, forming a relatively narrow-band plume; the coupling model demonstrated that the southwesterly monsoon-driven current pushed plumes favorably along the west pier into the harbor.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3