Dependence of Tensile Properties and Fracture Behaviors on the Fractions of Continuous and Discontinuous Precipitates in Peak-Aged AZ80A Magnesium Alloy

Author:

Zhang Kelong1,Li Huizhong123,Liang Xiaopeng123ORCID,Chen Zhi1,Tao Hui1,Che Yixuan1,Li Li1,Luo Zixiang1ORCID,Huo Qinghuan123ORCID

Affiliation:

1. School of Materials Science and Engineering, Central South University, Changsha 410083, China

2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

3. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China

Abstract

After T5 (forging + aging) and different T6 (forging + solution + aging) heat treatments, the AZ80A Mg alloys exhibited microstructures with different fractions of continuous precipitate (CP) regions and discontinuous precipitate (DP) regions. The effects of the fractions of DP regions and CP regions on the tensile properties and fracture behaviors were investigated using microstructural characterizations and analysis. The results showed that increasing the fraction of DP regions enhanced the yield strength and tensile strength at room temperature. However, at the same high temperature, increasing the fractions of DP regions improved the elongation but deteriorated the tensile strength significantly. The different resultant tensile properties at different temperatures were caused by the different precipitation-strengthening effects in the CP and DP regions. The strengthening contribution of the DP regions was more effective at room temperature but became inferior to the effect brought about by the CP regions at high temperatures. Micro-cracks were usually initiated and propagated in the CP regions at room temperature. At high temperatures, however, micro-voids formed more easily in the DP regions, and the fracture path preferred to locate there.

Funder

the Natural Science Foundation of Hunan Province of China

the Postgraduate Independent Exploration and Innovation Project of Central South University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3