Investigating the Supercapacitive Performance of Cobalt Sulfide Nanostructures Prepared Using a Hydrothermal Method

Author:

Alshoaibi Adil1ORCID

Affiliation:

1. Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

Abstract

In this study, we synthesized cobalt sulfide (CoS) nanostructures for supercapacitor applications via a one-step hydrothermal method. The effect of hydrothermal temperature on the synthesis process was investigated at temperatures ranging from 160 °C to 220 °C. The structural, morphological, and elemental analyses were performed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The XRD patterns show the hexagonal phase of CoS, and the samples prepared at 200 °C have high crystallinity. The samples prepared at other temperatures show amorphousness at lower 2-theta angles. EDX indicated that the sample was of high purity, except that the sample prepared at 220 °C had an additional oxygen peak, indicating that sulfur is not stable at high temperatures. In addition, a cobalt oxide (CoO) peak is also observed in the XRD data of the sample prepared at 220 °C. SEM images show that the particles in the samples prepared at 160 °C and 180 °C are agglomerated due to the high surface energy, whereas the samples prepared at 200 °C and 220 °C have a distinct morphology. Electrochemical analyses such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD) were performed on all samples. The CoS sample prepared at 200 °C exhibited a high specific capacitance (Csp) of 1583 F/g at a current density of 1 A/g, with low resistivity and high cycling stability.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3