Changes in the Strength and Leaching Characteristics of Steel Slag-Oil Shale Residue-Based Filling Paste in a Complex Erosive Environment

Author:

Lian Fengmei1,Du Chuanyang2,Meng Dan3

Affiliation:

1. College of Architecture and Transportation, Liaoning Technical University, Fuxin 123000, China

2. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China

3. School of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Our research group prepared a new filling paste consisting of steel slag–oil shale residue and no admixtures. It was used as the research object to explore the combined effect of chloride and dry–wet cycling-driven erosion on the long-term stability of a cemented filling paste made of total solid wastes. Macroscopic experiments and microscopic analyses methods were employed. The influence of solutions with different mass fractions of chloride salts and different cycling periods on the uniaxial compressive strength and toxicity of the steel slag–oil shale residue-based filling paste was studied, and the deterioration mechanisms of the steel slag–oil shale residue-based filling paste under combined erosion from chloride and dry–wet cycling were investigated. The test results showed that in the same cycling conditions, the strength of the steel slag-oil shale residue-based filling paste increased first with the increase in the mass fraction of the chloride solution and then decreased with the increase in the mass fraction of the chloride solution after reaching the peak value; the leached concentrations of heavy metal ions decreased with increasing chloride salt mass fraction. With an increase in the number of dry–wet cycles, the compressive strength of the specimens in the chloride salt solution with a mass fraction of 0 (pure water) first increases and then tends to be stable. The strength of samples in 5% and 10% chloride salt solutions increased first and then decreased with an increase in the number of dry–wet cycles. The leached concentrations of heavy metal ions from the samples in all three solutions first decreased and then stabilized. The prehydration products of the steel slag–oil shale residue-based filling paste were C-S-H gels, AFt and Friedel’s salt, and these increased with increasing chloride salt mass fraction and the number of dry–wet cycles. However, the hydration reactions of the samples in the 0% chloride solution nearly stopped in the later stages of cycling, and the samples in 5% and 10% chloride salt solutions developed local cracks due to the accumulation of hydration products. The results showed that the number of dry–wet cycles and the chloride salt mass fraction affected the strength and leaching characteristics of the steel slag–oil shale residue-based filling paste by changing the type and amount of erosion products. The test results provide a scientific basis for the promotion and application of backfilling pastes made from total solid wastes.

Funder

CCTEG

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. Mechanical characteristics variation of stratified cemented tailing backfilling and its failure modes;Cao;J. China Univ. Min. Technol.,2016

2. CO2 storage-cavern construction and storage method based on functional backfill;Liu;J. China Coal Soc.,2022

3. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method;Liu;Acta Mater. Compos. Sin.,2021

4. Formulation optimization and formation mechanism of condensate expansion and filling composites;Lan;Acta Mater. Compos. Sin.,2019

5. Acoustic emission characteristics of cementitious material with different cement-tailing ratio;Zhao;J. Chin. Ceram. Soc.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3