Manufacturing Process, Microstructure and Physico-Mechanical Properties of W-Cr Coatings Reinforced by Cr3C2 Phase Produced on Tool Steel through Laser Processing

Author:

Bartkowski Dariusz1ORCID,Bartkowska Aneta2ORCID

Affiliation:

1. Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland

2. Institute of Materials Science and Engineering, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, ul. Jana Pawła II 24, 61-138 Poznan, Poland

Abstract

This paper presents study results of laser processing of W-Cr, WCr/Cr3C2 and Cr3C2 pre-coats applied on steel substrate in the form of paste. For this study, production parameters were selected to obtain the greatest possible durability of final coatings. Laser processing was carried out using a diode laser machine with a rated power of 3 kW. The laser beam scanning speed was constant at 3 m/min, but variable laser beam powers were used: 600 W, 900 W and 1200 W. Multiple laser tracks with 60% overlapping were used. After remelting the pre-coat with a steel substrate, new coatings were obtained. Following the experiment, microstructure, microhardness, wear, corrosion resistance and chemical composition were investigated. It was found that it is possible to produce W-Cr/Cr3C2 coatings through laser processing. These coatings do not have the characteristics of a composite coating; however, increasing the reinforcing phase in the pre-coat positively affects the wear resistance and microhardness. The addition of a reinforcing phase was found to lead to a microhardness of about 750–890 HV01 for 25% and 75% Cr3C2, respectively, in comparison to coating without Cr3C2. The wear resistance of coatings reinforced by chromium carbide improved more than twofold in reference to the W-Cr coating.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3