Malvidin-3-O-Glucoside Ameliorates Cadmium-Mediated Cell Dysfunction in the Estradiol Generation of Human Granulosa Cells

Author:

Liang Shuer12,Li Xusheng23,Liu Ruijing2,Hu Jun2,Li Yue2,Sun Jianxia1,Bai Weibin2

Affiliation:

1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

2. Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China

3. The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, China

Abstract

Cadmium (Cd) is a frequent environmental pollutant associated with biological toxicity that can harm female reproduction. Anthocyanins have been reported to reduce the toxicity of Cd. In the present study, the protective effects and underlying mechanisms of malvidin-3-O-glucoside (M3G) against the toxicity of Cd on female reproduction in KGN cells (human ovarian granulosa-like tumor cells) were investigated. After treating cells with 10 µmol/L cadmium chloride, the results showed that M3G lessened Cd-induced KGN cell cytotoxicity better than malvidin and malvidin-3,5-O-diglucoside. Additionally, M3G significantly decreased the Cd-induced generation of reactive oxygen species, inhibited the Cd-induced arrest of the G2/M phase of the cell cycle, and increased estradiol (E2) production. According to transcriptomic results, M3G reduced the abnormal expression of genes that responded to estrogen. Additionally, M3G promoted the endogenous synthesis and secretion of E2 by controlling the expression of CYP17A1 and HSD17B7. The current findings indicated that M3G is of great potential to prevent Cd-induced female reproductive impairment as a dietary supplement.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangzhou

Guangdong Key Area Research and Development Program

Youth Science and Technology Innovation Talent of Guangdong Tezhi Plan

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3