Improved Dragonfly Optimization Algorithm for Detecting IoT Outlier Sensors

Author:

Meqdad Maytham N.ORCID,Kadry SeifedineORCID,Rauf Hafiz TayyabORCID

Abstract

Things receive digital intelligence by being connected to the Internet and by adding sensors. With the use of real-time data and this intelligence, things may communicate with one another autonomously. The environment surrounding us will become more intelligent and reactive, merging the digital and physical worlds thanks to the Internet of things (IoT). In this paper, an optimal methodology has been proposed for distinguishing outlier sensors of the Internet of things based on a developed design of a dragonfly optimization technique. Here, a modified structure of the dragonfly optimization algorithm is utilized for optimal area coverage and energy consumption reduction. This paper uses four parameters to evaluate its efficiency: the minimum number of nodes in the coverage area, the lifetime of the network, including the time interval from the start of the first node to the shutdown time of the first node, and the network power. The results of the suggested method are compared with those of some other published methods. The results show that by increasing the number of steps, the energy of the live nodes will eventually run out and turn off. In the LEACH method, after 350 steps, the RED-LEACH method, after 750 steps, and the GSA-based method, after 915 steps, the nodes start shutting down, which occurs after 1227 steps for the proposed method. This means that the nodes are turned off later. Simulations indicate that the suggested method achieves better results than the other examined techniques according to the provided performance parameters.

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3