ReFuse: Generating Imperviousness Maps from Multi-Spectral Sentinel-2 Satellite Imagery

Author:

Giacco GiovanniORCID,Marrone StefanoORCID,Langella GiulianoORCID,Sansone CarloORCID

Abstract

Continual mapping and monitoring of impervious surfaces are crucial activities to support sustainable urban management strategies and to plan effective actions for environmental changes. In this context, impervious surface coverage is increasingly becoming an essential indicator for assessing urbanization and environmental quality, with several works relying on satellite imagery to determine it. However, although satellite imagery is typically available with a frequency of 3–10 days worldwide, imperviousness maps are released at most annually as they require a huge human effort to be produced and validated. Attempts have been made to extract imperviousness maps from satellite images using machine learning, but (i) the scarcity of reliable and detailed ground truth (ii) together with the need to manage different spectral bands (iii) while making the resulting system easily accessible to the end users is limiting their diffusion. To tackle these problems, in this work we introduce a deep-learning-based approach to extract imperviousness maps from multi-spectral Sentinel-2 images leveraging a very detailed imperviousness map realised by the Italian department for environment protection as ground truth. We also propose a scalable and portable inference pipeline designed to easily scale the approach, integrating it into a web-based Geographic Information System (GIS) application. As a result, even non-expert GIS users can quickly and easily calculate impervious surfaces for any place on Earth (accuracy >95%), with a frequency limited only by the availability of new satellite images.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3