A Parallel Sequential SBAS Processing Framework Based on Hadoop Distributed Computing

Author:

Wu Zhenning123ORCID,Lv Xiaolei123,Yun Ye123,Duan Wei4

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

4. Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

Abstract

With the rapid development of microwave remote sensing and SAR satellite systems, the use of InSAR techniques has been greatly encouraged due to the abundance of SAR data with unprecedented temporal and spatial coverage. Small Baseline Subset (SBAS) is a promising time-series InSAR method for applications involving deformation monitoring of the Earth’s crust, and the sequential SBAS method is an extension of SBAS that allows long-term and large-scale surface displacements to be obtained with continuously auto-updating measurement results. As the Chinese LuTan-1 SAR system has begun acquiring massive SAR image data, the need for an efficient and lightweight InSAR processing platform has become urgent in various research fields. However, traditional sequential algorithms are incapable of meeting the huge challenges of low efficiency and frequent human interaction in large-scale InSAR data processing. Therefore, this study proposes a distributed parallel sequential SBAS (P2SBAS) processing chain based on Hadoop by effectively parallelizing and improving the current sequential SBAS method. P2SBAS mainly consists of two components: (1) a distributed SAR data storage platform based on HDFS, which supports efficient inter-node data transfer and continuous online data acquisition, and (2) several parallel InSAR processing algorithms based on the MapReduce model, including image registration, filtering, phase unwrapping, sequential SBAS processing, and so on. By leveraging the capabilities associated with the distributed nature of the Hadoop platform, these algorithms are able to efficiently utilize the segmentation strategy and perform careful boundary processing. These parallelized InSAR algorithm modules can achieve their goals on different nodes in the Hadoop distributed environment, thereby maximizing computing resources and improving the overall performance while comprehensively considering performance and precision. In addition, P2SBAS provides better computing and storage capabilities for small- and medium-sized teams compared to popular InSAR processing approaches based on cloud computing or supercomputing platforms, and it can be easily deployed on clusters thanks to the integration of various existing computing components. Finally, to demonstrate and evaluate the efficiency and accuracy of P2SBAS, we conducted comparative experiments on a set of 32 TerraSAR images of Beijing, China. The results demonstrate that P2SBAS can fully utilize various computing nodes to improve InSAR processing and can be applied well in large-scale LuTan-1 InSAR applications in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3