Disparity Refinement for Stereo Matching of High-Resolution Remote Sensing Images Based on GIS Data

Author:

Wang Xuanqi123,Jiang Liting123,Wang Feng12ORCID,You Hongjian123,Xiang Yuming123ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

With the emergence of the Smart City concept, the rapid advancement of urban three-dimensional (3D) reconstruction becomes imperative. While current developments in the field of 3D reconstruction have enabled the generation of 3D products such as Digital Surface Models (DSM), challenges persist in accurately reconstructing shadows, handling occlusions, and addressing low-texture areas in very-high-resolution remote sensing images. These challenges often lead to difficulties in calculating satisfactory disparity maps using existing stereo matching methods, thereby reducing the accuracy of 3D reconstruction. This issue is particularly pronounced in urban scenes, which contain numerous super high-rise and densely distributed buildings, resulting in large disparity values and occluded regions in stereo image pairs, and further leading to a large number of mismatched points in the obtained disparity map. In response to these challenges, this paper proposes a method to refine the disparity in urban scenes based on open-source GIS data. First, we register the GIS data with the epipolar-rectified images since there always exists unignorable geolocation errors between them. Specifically, buildings with different heights present different offsets in GIS data registering; thus, we perform multi-modal matching for each building and merge them into the final building mask. Subsequently, a two-layer optimization process is applied to the initial disparity map based on the building mask, encompassing both global and local optimization. Finally, we perform a post-correction on the building facades to obtain the final refined disparity map that can be employed for high-precision 3D reconstruction. Experimental results on SuperView-1, GaoFen-7, and GeoEye satellite images show that the proposed method has the ability to correct the occluded and mismatched areas in the initial disparity map generated by both hand-crafted and deep-learning stereo matching methods. The DSM generated by the refined disparity reduces the average height error from 2.2 m to 1.6 m, which demonstrates superior performance compared with other disparity refinement methods. Furthermore, the proposed method is able to improve the integrity of the target structure and present steeper building facades and complete roofs, which are conducive to subsequent 3D model generation.

Funder

Key Research Program of Frontier Sciences, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Hirschmüller, H. (2005, January 20–25). Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA.

2. High-density stereo image matching using intrinsic curves;Shahbazi;ISPRS J. Photogramm. Remote Sens.,2018

3. Stereo matching based on multi-direction polynomial model;Tan;Signal Process. Image Commun. Publ. Eur. Assoc. Signal Process.,2016

4. Accurate Image-Guided Stereo Matching With Efficient Matching Cost and Disparity Refinement;Zhan;IEEE Trans. Circuits Syst. Video Technol.,2016

5. Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching;Tulyakov;Adv. Neural Inf. Process. Syst.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3